Stratifying systems over hereditary algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stratifying Algebras with Near-matrix Algebras

Given a left module U and a right modules V over an algebra D and a bilinear form β : U × V → D, we may define an associative algebra structure on the tensor product V ⊗D U . This algebra is called a near-matrix algebra. In this paper, we shall investigate algebras filtered by near-matrix algebras in some nice way and give a unified treatment for quasi-hereditary algebras, cellular algebras, an...

متن کامل

Stratifying Endomorphism Algebras Associated to Hecke Algebras

Let G be a nite group of Lie type and let k be a eld of characteristic distinct from the de ning characteristic of G. In studying the non-describing representation theory of G, the endomorphism algebra S(G;k) = EndkG( L J ind G PJ k) plays an increasingly important role. In type A, by work of Dipper and James, S(G; k) identi es with a q-Schur algebra and so serves as a link between the represen...

متن کامل

STRATIFYING q-SCHUR ALGEBRAS OF TYPE D

Two families of q-Schur algebras associated to Hecke algebras of type D are introduced, and related to a family used by Geck, Gruber and Hiss [10], [11]. We prove that the algebras in one family, called the q-Schur algebras, are integrally free, stable under base change, and are standardly stratified if the base field has odd characteristic. In the so-called linear prime case of [10],[11], all ...

متن کامل

Skew group algebras of piecewise hereditary algebras are piecewise hereditary

The aim of this paper is twofold. First, we show that the main results of HappelRickard-Schofield (1988) and Happel-Reiten-Smalø (1996) on piecewise hereditary algebras are coherent with the notion of group action on an algebra. Then, we take advantage of this compatibility and show that if G is a finite group acting on a piecewise hereditary algebra A over an algebraically closed field whose c...

متن کامل

Ideal Amenability of Banach Algebras and Some Hereditary Properties

Let A be a Banach algebra. A is called ideally amenable if for every closed ideal I of A, the first cohomology group of A with coefficients in I* is trivial. We investigate the closed ideals I for which H1 (A,I* )={0}, whenever A is weakly amenable or a biflat Banach algebra. Also we give some hereditary properties of ideal amenability.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2015

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s0219498815500930